Monday 15 July 2013

BASIC TERMS USED IN C


Tokens 

A C program consists of various tokens and a token is either a keyword, an identifier, a constant, a string literal, or a symbol. For example, the following C statement consists of five tokens:
printf("Hello, World! \n");
The individual tokens are:
printf
(
"Hello, World! \n"
)
;

Semicolons ;

In C program, the semicolon is a statement terminator. That is, each individual statement must be ended with a semicolon. It indicates the end of one logical entity.
For example, following are two different statements:
printf("Hello, World! \n");
return 0;

Comments

Comments are like helping text in your C program and they are ignored by the compiler. They start with /* and terminates with the characters */ as shown below:
/* my first program in C */
You can not have comments with in comments and they do not occur within a string or character literals.

Identifiers

A C identifier is a name used to identify a variable, function, or any other user-defined item. An identifier starts with a letter A to Z or a to z or an underscore _ followed by zero or more letters, underscores, and digits (0 to 9).
C does not allow punctuation characters such as @, $, and % within identifiers. C is a case sensitiveprogramming language. Thus Manpower and manpower are two different identifiers in C. Here are some examples of acceptable identifiers:
mohd       zara    abc   move_name  a_123
myname50   _temp   j     a23b9      retVal

Keywords

The following list shows the reserved words in C. These reserved words may not be used as constant or variable or any other identifier names.
autoelselongswitch
breakenumregistertypedef
caseexternreturnunion
charfloatshortunsigned
constforsignedvoid
continuegotosizeofvolatile
defaultifstaticwhile
dointstruct_Packed
double   

Whitespace 

A line containing only whitespace, possibly with a comment, is known as a blank line, and a C compiler totally ignores it.
Whitespace is the term used in C to describe blanks, tabs, newline characters and comments. Whitespace separates one part of a statement from another and enables the compiler to identify where one element in a statement, such as int, ends and the next element begins. Therefore, in the following statement:
int age;
There must be at least one whitespace character (usually a space) between int and age for the compiler to be able to distinguish them. On the other hand, in the following statement
fruit = apples + oranges;   // get the total fruit
No whitespace characters are necessary between fruit and =, or between = and apples, although you are free to include some if you wish for readability purpose.

THE DATA TYPES 

In the C programming language, data types refers to an extensive system used for declaring variables or functions of different types. The type of a variable determines how much space it occupies in storage and how the bit pattern stored is interpreted.
The types in C can be classified as follows:
S.N.Types and Description
1Basic Types:
They are arithmetic types and consists of the two types: (a) integer types and (b) floating-point types.
2Enumerated types:
They are again arithmetic types and they are used to define variables that can only be assigned certain discrete integer values throughout the program.
3The type void:
The type specifier void indicates that no value is available.
4Derived types:
They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types and (e) Function types.
The array types and structure types are referred to collectively as the aggregate types. The type of a function specifies the type of the function's return value. We will see basic types in the following section where as other types will be covered in the upcoming chapters.

Integer Types

Following table gives you detail about standard integer types with its storage sizes and value ranges:
TypeStorage sizeValue range
char1 byte-128 to 127 or 0 to 255
unsigned char1 byte0 to 255
signed char1 byte-128 to 127
int2 or 4 bytes-32,768 to 32,767 or -2,147,483,648 to 2,147,483,647
unsigned int2 or 4 bytes0 to 65,535 or 0 to 4,294,967,295
short2 bytes-32,768 to 32,767
unsigned short2 bytes0 to 65,535
long4 bytes-2,147,483,648 to 2,147,483,647
unsigned long4 bytes0 to 4,294,967,295
To get the exact size of a type or a variable on a particular platform, you can use the sizeof operator. The expressions sizeof(type) yields the storage size of the object or type in bytes. Following is an example to get the size of int type on any machine:
E.G : float per = 84.70;

Floating-Point Types

Following table gives you detail about standard float-point types with storage sizes and value ranges and their precision:
TypeStorage sizeValue rangePrecision
float4 byte1.2E-38 to 3.4E+386 decimal places
double8 byte2.3E-308 to 1.7E+30815 decimal places
long double10 byte3.4E-4932 to 1.1E+493219 decimal places
The header file float.h defines macros that allow you to use these values and other details about the binary representation of real numbers in your programs. Following example will print storage space taken by a float type and its range values:
#include <stdio.h>
#include <float.h>

int main()
{
   printf("Storage size for float : %d \n", sizeof(float));
   printf("Minimum float positive value: %E\n", FLT_MIN );
   printf("Maximum float positive value: %E\n", FLT_MAX );
   printf("Precision value: %d\n", FLT_DIG );
   
   return 0;
}
When you compile and execute the above program it produces following result on Linux:
Storage size for float : 4
Minimum float positive value: 1.175494E-38
Maximum float positive value: 3.402823E+38
Precision value: 6

The void Type

The void type specifies that no value is available. It is used in three kinds of situations:
S.N.Types and Description
1Function returns as void
There are various functions in C who do not return value or you can say they return void. A function with no return value has the return type as void. For example void exit (int status);
2Function arguments as void
There are various functions in C who do not accept any parameter. A function with no parameter can accept as a void. For example int rand(void);
3Pointers to void 
A pointer of type void * represents the address of an object, but not its type. For example a memory allocation function void *malloc( size_t size ); returns a pointer to void which can be casted to any data type.
The void type may not be understood to you at this point, so let us proceed and we will cover these concepts in upcoming chapters.

No comments:

Post a Comment